CubeSats Take a Bus into Space

This bus doesn’t use wheels to move around, but a CubeSat can’t get anywhere without it. In the world of these small, standardized, inexpensive satellites, a “bus” refers to the hardware foundation that provides it with power, communications, thermal stability, and other “services” a payload needs to function.

CAPSTONE Uses Gravity on Unusual, Efficient Route to the Moon

CAPSTONE is planned to launch no earlier than May 31 aboard Rocket Lab’s Electron rocket from the company’s Launch Complex 1 in Mahia, New Zealand. The CubeSat will start its mission joined with the Lunar Photon, an interplanetary third stage developed by Rocket Lab.

Rocket Lab Begins Payload Integration for CAPSTONE Mission to the Moon

CAPSTONE will be launched to an initial low Earth orbit by Rocket Lab’s Electron launch vehicle and then placed on a ballistic lunar transfer by Rocket Lab’s Lunar Photon spacecraft bus. Unlike the Apollo lunar missions of the 1960s and 70s, which took a free return trajectory to the Moon, this fuel efficient ballistic lunar transfer makes it possible to deploy CAPSTONE to such a distant orbit using a small launch vehicle.

Little CAPSTONE cubesat ready to launch on big moon mission next month

The Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment — mercifully called CAPSTONE for short — tips the scales at a modest 55 pounds (25 kilograms). This microwave-oven-sized spacecraft will be lofted from New Zealand aboard a Rocket Lab Electron rocket equipped with a Lunar Photon upper stage.

CAPSTONE cubesat ready for cislunar mission

NASA’s intention to replant bootprints on the moon is getting a kick-start by the launch of a microwave oven-sized smallsat, the Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment, called CAPSTONE for short.